21 research outputs found

    Causally-Inspired Generalizable Deep Learning Methods under Distribution Shifts

    Get PDF
    Deep learning methods achieved remarkable success in various areas of artificial intelligence, due to their powerful distribution-matching capabilities. However, these successes rely heavily on the i.i.d assumption, i.e., the data distributions in the training and test datasets are the same. In this way, current deep learning methods typically exhibit poor generalization under distribution shift, performing poorly on test data with a distribution that differs from the training data. This significantly hinders the application of deep learning methods to real-world scenarios, as the distribution of test data is not always the same as the training distribution in our rapidly evolving world. This thesis aims to discuss how to construct generalizable deep learning methods under distribution shifts. To achieve this, the thesis first models one prediction task as a structural causal model (SCM) which establishes the relationship between variables using directed acyclic graphs. In an SCM, some variables are easily changed across domains while others are not. However, deep learning methods often unintentionally mix invariant variables with easily changed variables, and thus deviate the learned model from the true one, resulting in the poor generalization ability under distribution shift. To remedy this issue, we propose specific algorithms to model such an invariant part of the SCM with deep learning methods, and experimentally show it is beneficial for the trained model to generalize well into different distributions of the same task. Last, we further propose to identify and model the variant information in the new test distribution so that we can fully adapt the trained deep learning model accordingly. We show the method can be extended for several practical applications, such as classification under label shift, image translation under semantics shift, robotics control in dynamics generalization and generalizing large language models into visual question-answer tasks

    Long Text Generation via Adversarial Training with Leaked Information

    Get PDF
    Automatically generating coherent and semantically meaningful text has many applications in machine translation, dialogue systems, image captioning, etc. Recently, by combining with policy gradient, Generative Adversarial Nets (GAN) that use a discriminative model to guide the training of the generative model as a reinforcement learning policy has shown promising results in text generation. However, the scalar guiding signal is only available after the entire text has been generated and lacks intermediate information about text structure during the generative process. As such, it limits its success when the length of the generated text samples is long (more than 20 words). In this paper, we propose a new framework, called LeakGAN, to address the problem for long text generation. We allow the discriminative net to leak its own high-level extracted features to the generative net to further help the guidance. The generator incorporates such informative signals into all generation steps through an additional Manager module, which takes the extracted features of current generated words and outputs a latent vector to guide the Worker module for next-word generation. Our extensive experiments on synthetic data and various real-world tasks with Turing test demonstrate that LeakGAN is highly effective in long text generation and also improves the performance in short text generation scenarios. More importantly, without any supervision, LeakGAN would be able to implicitly learn sentence structures only through the interaction between Manager and Worker.Comment: 14 pages, AAAI 201

    Paste, Inpaint and Harmonize via Denoising: Subject-Driven Image Editing with Pre-Trained Diffusion Model

    Full text link
    Text-to-image generative models have attracted rising attention for flexible image editing via user-specified descriptions. However, text descriptions alone are not enough to elaborate the details of subjects, often compromising the subjects' identity or requiring additional per-subject fine-tuning. We introduce a new framework called \textit{Paste, Inpaint and Harmonize via Denoising} (PhD), which leverages an exemplar image in addition to text descriptions to specify user intentions. In the pasting step, an off-the-shelf segmentation model is employed to identify a user-specified subject within an exemplar image which is subsequently inserted into a background image to serve as an initialization capturing both scene context and subject identity in one. To guarantee the visual coherence of the generated or edited image, we introduce an inpainting and harmonizing module to guide the pre-trained diffusion model to seamlessly blend the inserted subject into the scene naturally. As we keep the pre-trained diffusion model frozen, we preserve its strong image synthesis ability and text-driven ability, thus achieving high-quality results and flexible editing with diverse texts. In our experiments, we apply PhD to both subject-driven image editing tasks and explore text-driven scene generation given a reference subject. Both quantitative and qualitative comparisons with baseline methods demonstrate that our approach achieves state-of-the-art performance in both tasks. More qualitative results can be found at \url{https://sites.google.com/view/phd-demo-page}.Comment: 10 pages, 12 figure

    Suspicion-Agent: Playing Imperfect Information Games with Theory of Mind Aware GPT-4

    Full text link
    Unlike perfect information games, where all elements are known to every player, imperfect information games emulate the real-world complexities of decision-making under uncertain or incomplete information. GPT-4, the recent breakthrough in large language models (LLMs) trained on massive passive data, is notable for its knowledge retrieval and reasoning abilities. This paper delves into the applicability of GPT-4's learned knowledge for imperfect information games. To achieve this, we introduce \textbf{Suspicion-Agent}, an innovative agent that leverages GPT-4's capabilities for performing in imperfect information games. With proper prompt engineering to achieve different functions, Suspicion-Agent based on GPT-4 demonstrates remarkable adaptability across a range of imperfect information card games. Importantly, GPT-4 displays a strong high-order theory of mind (ToM) capacity, meaning it can understand others and intentionally impact others' behavior. Leveraging this, we design a planning strategy that enables GPT-4 to competently play against different opponents, adapting its gameplay style as needed, while requiring only the game rules and descriptions of observations as input. In the experiments, we qualitatively showcase the capabilities of Suspicion-Agent across three different imperfect information games and then quantitatively evaluate it in Leduc Hold'em. The results show that Suspicion-Agent can potentially outperform traditional algorithms designed for imperfect information games, without any specialized training or examples. In order to encourage and foster deeper insights within the community, we make our game-related data publicly available

    Texygen: A Benchmarking Platform for Text Generation Models

    Get PDF
    We introduce Texygen, a benchmarking platform to support research on open-domain text generation models. Texygen has not only implemented a majority of text generation models, but also covered a set of metrics that evaluate the diversity, the quality and the consistency of the generated texts. The Texygen platform could help standardize the research on text generation and facilitate the sharing of fine-tuned open-source implementations among researchers for their work. As a consequence, this would help in improving the reproductivity and reliability of future research work in text generation.Comment: 4 page

    GenORM: Generalizable One-shot Rope Manipulation with Parameter-Aware Policy

    Full text link
    Due to the inherent uncertainty in their deformability during motion, previous methods in rope manipulation often require hundreds of real-world demonstrations to train a manipulation policy for each rope, even for simple tasks such as rope goal reaching, which hinder their applications in our ever-changing world. To address this issue, we introduce GenORM, a framework that allows the manipulation policy to handle different deformable ropes with a single real-world demonstration. To achieve this, we augment the policy by conditioning it on deformable rope parameters and training it with a diverse range of simulated deformable ropes so that the policy can adjust actions based on different rope parameters. At the time of inference, given a new rope, GenORM estimates the deformable rope parameters by minimizing the disparity between the grid density of point clouds of real-world demonstrations and simulations. With the help of a differentiable physics simulator, we require only a single real-world demonstration. Empirical validations on both simulated and real-world rope manipulation setups clearly show that our method can manipulate different ropes with a single demonstration and significantly outperforms the baseline in both environments (62% improvement in in-domain ropes, and 15% improvement in out-of-distribution ropes in simulation, 26% improvement in real-world), demonstrating the effectiveness of our approach in one-shot rope manipulation

    Ranking-Incentivized Quality Preserving Content Modification

    Full text link
    The Web is a canonical example of a competitive retrieval setting where many documents' authors consistently modify their documents to promote them in rankings. We present an automatic method for quality-preserving modification of document content -- i.e., maintaining content quality -- so that the document is ranked higher for a query by a non-disclosed ranking function whose rankings can be observed. The method replaces a passage in the document with some other passage. To select the two passages, we use a learning-to-rank approach with a bi-objective optimization criterion: rank promotion and content-quality maintenance. We used the approach as a bot in content-based ranking competitions. Analysis of the competitions demonstrates the merits of our approach with respect to human content modifications in terms of rank promotion, content-quality maintenance and relevance.Comment: 10 pages. 8 figures. 3 table

    Weight Fused functional sliced average variance estimation

    No full text
    Communications in Statistics - Simulation and Computation5195000-500

    DreamSparse: Escaping from Plato's Cave with 2D Diffusion Model Given Sparse Views

    Full text link
    Synthesizing novel view images from a few views is a challenging but practical problem. Existing methods often struggle with producing high-quality results or necessitate per-object optimization in such few-view settings due to the insufficient information provided. In this work, we explore leveraging the strong 2D priors in pre-trained diffusion models for synthesizing novel view images. 2D diffusion models, nevertheless, lack 3D awareness, leading to distorted image synthesis and compromising the identity. To address these problems, we propose DreamSparse, a framework that enables the frozen pre-trained diffusion model to generate geometry and identity-consistent novel view image. Specifically, DreamSparse incorporates a geometry module designed to capture 3D features from sparse views as a 3D prior. Subsequently, a spatial guidance model is introduced to convert these 3D feature maps into spatial information for the generative process. This information is then used to guide the pre-trained diffusion model, enabling it to generate geometrically consistent images without tuning it. Leveraging the strong image priors in the pre-trained diffusion models, DreamSparse is capable of synthesizing high-quality novel views for both object and scene-level images and generalising to open-set images. Experimental results demonstrate that our framework can effectively synthesize novel view images from sparse views and outperforms baselines in both trained and open-set category images. More results can be found on our project page: https://sites.google.com/view/dreamsparse-webpage
    corecore